EXISTENCE OF GENERALIZED SYMMETRIC RIEMANNIAN SPACES OF ARBITRARY ORDER

OLDŘICH KOWALSKI

A Riemannian symmetric space is a Riemmanian manifold (M, g) with the following properties: for each $x \in M$ there is a (unique) isometry J_x on M such that

- (a) x is an isolated fixed point of J_x ,
- (b) $(J_x)^2 = identity$.

It is also easy to show the following property: for every two points $x, y \in M$ we have

(c) $J_x \circ J_y = J_z \circ J_x$, where $z = J_x(y)$.

The following is a direct generalization of the previous situation.

Definition. A Riemannian k-symmetric space $(k \ge 2)$ is a Riemannian manifold (M, g) on which a family $\{s_x\}_{x \in M}$ of isometries exists with the following properties:

- (a) Each $x \in M$ is an isolated fixed point of the corresponding s_x ,
- (b) $(s_x)^k = \text{identity for all } x \in M$, and k is the minimum number of this property,
 - (c) for every $x, y \in M$, $s_x \circ s_y = s_z \circ s_x$, where $z = s_x(y)$.

In fact, Ledger and Obata [3] have proved that for every k > 2 there is a k-symmetric Riemannian space which is not symmetric. The purpose of this paper is to strengthen the previous result in the following sense: for every k > 2 there is a k-symmetric Riemannian space which is not l-symmetric for $l = 2, \dots, k-1$. (Such a Riemannian space is said to be generalized symmetric of order k; see [2]). In our further considerations we shall make full use of the original construction by Ledger and Obata.

1. Let M = G/H be a homogeneous Riemannian space. As usual, we suppose G acting effectively on the coset space G/H. Thus the Lie group G can be considered as a group of isometries on M. Let $\pi: G \to M$ denote the canonical prejection.

Proposition 1. Let G admit an automorphism σ such that

- (i) $H = G^{\sigma} = the fixed point set of \sigma$,
- (ii) $\sigma^k = identity$,
- (iii) the transformation s of M determined by $\pi \circ \sigma = s \circ \pi$ is an isometry. Then M is a Riemannian k-symmetric space.

Communicated by W. P. A. Klingenberg, May 15, 1975.

Proof. For $x \in M$ define a transformation s_x of M by the formula $s_x = g \circ s \circ g^{-1}$, where $g \in \pi^{-1}(x)$. Then s_x is independent of the choice of g. In fact, for each $h \in H$ we have $L_h \circ \sigma \circ L_{h-1} = \sigma$ and $\pi \circ L_h = h \circ \pi$. Hence $(h \circ s \circ h^{-1}) \circ \pi = h \circ (s \circ \pi) \circ L_{h-1} = h \circ (\pi \circ \sigma) \circ L_{h-1} = \pi \circ (L_h \circ \sigma \circ L_{h-1}) = \pi \circ \sigma$, and consequently, $h \circ s \circ h^{-1} = s$. Thus for g' = gh we obtain $g' \circ s \circ g'^{-1} = g \circ s \circ g^{-1}$.

It is clear that $(s_x)^k = \text{identity for each } x \in M$. We have to prove that x is an isolated fixed point of s_x . For, it is sufficient to show that the initial point $o \in M$, $o = \pi(H)$, is an isolated fixed point of s. Condition (iii) implies that $s_{*0} \circ \pi_{*e} = \pi_{*e} \circ \sigma_{*e}$ on the tangent space G_e . Let $X \in M_0$ be such that $s_{*0}(X) = X$, and let $\tilde{X} \in G_e$ be a lift of X. Then $\pi_{*e}(\sigma_{*e}(\tilde{X})) = \pi_{*e}(\tilde{X})$, and hence $\sigma_{*e}(\tilde{X}) = \tilde{X} + \tilde{Z}$, where $\tilde{Z} \in H_e$. Now $\sigma_{*e}(\tilde{Z}) = \tilde{Z}$, and $(\sigma_{*e})^k(\tilde{X}) = \tilde{X} + k\tilde{Z} = \tilde{X}$ because $(\sigma_{*e})^k = \text{identity}$. Thus $\tilde{Z} = 0$ and \tilde{X} is a fixed vector of σ_{*e} . We deduce $\tilde{X} \in H_e$ and X = 0. Because s_{*0} has no nonzero fixed vectors and s is an isometry of M, we conclude that s is an isolated fixed doint of s.

Finally, we have to prove the formula $s_x \circ s_y = s_z \circ s_x$, $z = s_x(y)$. For this purpose we shall identify the elements of G with the corresponding transformations of M. Then we deduce $s \circ g \circ s^{-1} = \sigma(g)$. Put $s_x = g \circ s \circ g^{-1}$, $s_y = g' \circ s \circ (g')^{-1}$, where x = g(o) and y = g'(o). Then $(g \circ s \circ g^{-1} \circ g' \circ s^{-1})(o) = s_x(g'(o)) = s_x(y)$. On the other hand, $g \circ s \circ g^{-1} \circ g' \circ s^{-1} = g \circ \sigma(g^{-1}g') = g''$ belongs to G. Consequently, $s_x \circ s_y = g \circ s \circ g^{-1} \circ g' \circ s \circ (g')^{-1} = g'' \circ s \circ (g'')^{-1} \circ g \circ s \circ g^{-1} = s_{s_x}(y) \circ s_x$.

2. We shall recall here a class of Riemannian manifolds constructed by Ledger and Obata (see [3]). Let G be a compact connected nonabelian Lie group, G^{k+1} the direct product of G with itself (k+1)-times, and ΔG^{k+1} the diagonal of G^{k+1} . Consider the action of G^{k+1} on G^k given by

$$(x_1, \dots, x_{k+1})(y_1, \dots, y_k) = (x_1 y_1 x_{k+1}^{-1}, \dots, x_k y_k x_{k+1}^{-1}).$$

Then G^{k+1} acts on G^k transitively and effectively, and ΔG^{k+1} is the isotropy group at the identity $o = (e, \dots, e)$ of G^k . We get a diffeomorphism between G^k and the coset space $G^{k+1}/\Delta G^{k+1}$. Each tangent vector at the identity of G^k can be written in a unique way in the form (X_1, \dots, X_k) , where $X_1, \dots, X_k \in G_e$.

Now let Φ be an Ad (G)-invariant inner product on G_e , and let $\Phi^{[k]}$ be the Ad (ΔG^{k+1}) -invariant inner product on $(G^k)_0$ defined by

$$\begin{split} \Phi^{[k]}((X_1, \, \cdots, \, X_k), \, (X_1, \, \cdots, \, X_k)) \\ &= \sum_{i=1}^k \Phi(X_i, \, X_i) \, + \, \sum_{i < j} \Phi(X_i - X_j, \, X_i - X_j) \; . \end{split}$$

An alternative definition of $\Phi^{[k]}$ is the following: for $i=1,\dots,k$ and $X\in G_e$ let $X^{(i)}$ denote the vector $(X_1,\dots,X_k)\in (G^k)_e$ such that $X_i=X$ and $X_j=0$ for $j\neq i$. Then $\Phi^{[k]}(X^{(i)},Y^{(i)})=k\Phi(X,Y)$, and $\Phi^{[k]}(X^{(i)},Y^{(j)})=-\Phi(X,Y)$ for $i\neq j$.

The inner product $\Phi^{[k]}$ can be extended, by the left translations of G^{k+1} , to a Riemannian metric on G^k denoted also by $\Phi^{[k]}$. Then $G^{k+1}/\Delta G^{k+1}$ becomes a homogeneous Riemannian manifold $(G^k, \Phi^{[k]})$.

Let σ be an automorphism of G^{k+1} defined by the rule $\sigma(x_1, \dots, x_{k+1}) = (x_{k+1}, x_1, \dots, x_k)$. Then σ satisfies all the conditions of Proposition 1, where we write k+1, G^{k+1} , ΔG^{k+1} , G^k instead of k, G, H, M respectively. In particular, condition (iii) can be verified as follows: consider the transformation s of G^k determined by $\pi \circ \sigma = s \circ \pi$. Then for any $X \in G_e$ we deduce easily $s_{*0}(X^{(i)}) = X^{(i+1)}$ for $i=1,\dots,k-1$, $s_{*0}(X^{(k)}) = -(X^{(1)} + \dots + X^{(k)})$, and $\Phi^{[k]}(s_{*0}X^{(i)}, s_{*0}Y^{(j)}) = \Phi^{[k]}(X^{(i)}, Y^{(j)})$ for $i, j=1,\dots,k$. Thus the Riemannian manifold $(G^k, \Phi^{[k]})$ is (k+1)-symmetric.

3. In the remainder of this paper we shall specialize the class of manifolds $(G^k, \Phi^{[k]})$ in a proper way.

Proposition 2. Consider a homogeneous Riemannian manifold $(G^k, \Phi^{[k]})$ such that

- (a) G is simple,
- (b) G^{k+1} is the component of unity of the full isometry group $I(G^k, \Phi^{[k]})$. Then $(G^k, \Phi^{[k]})$ is not l-symmetric for any $1 \le k+1$.

Proof. Let r be an isometry of $(G^k, \Phi^{[k]})$ with the isolated fixed point $o = (e, \dots, e)$ such that $r^l =$ identity. Define an automorphism $\tilde{\rho}$ of the group $I(G^k, \Phi^{[k]})$ by the formula $\tilde{\rho}(g) = r \circ g \circ r^{-1}$. Then the restriction of $\tilde{\rho}$ to G^{k+1} is an automorphism ρ of G^{k+1} . We can easily see that $\pi \circ \rho = r \circ \pi$.

Now G^{k+1} is a direct product of simple subgroups $G^{*(i)}$, $i=1,\cdots,k+1$, all of them being canonically isomorphic to the group G. Then the automorphism $\rho\colon G^{k+1}\to G^{k+1}$ induces a permutation ν of the indices $1,\cdots,k+1$ such that $\rho(G^{*\nu(i)})=G^{*(i)},\ i=1,\cdots,k+1$. Denoting by φ_i the restriction of ρ to $G^{*\nu(i)}$, we get $\rho(g_1,\cdots,g_{k+1})=(\varphi_1(g_{\nu(1)}),\cdots,\varphi_{k+1}(g_{\nu(k+1)}))$. In particular, $\rho(g,\cdots,g)=(\varphi_1(g),\cdots,\varphi_{k+1}(g))$. Because $\rho(\Delta G^{k+1})\subset \Delta G^{k+1}$, we obtain $\varphi_1=\varphi_2=\cdots=\varphi_{k+1}$ under the canonical identification $G^{*(1)}=\cdots=G^{*(k+1)}=G$, and therefore a unique automorphism $\varphi\colon G\to G$ such that $\rho(g_1,\cdots,g_{k+1})=(\varphi(g_{\nu(1)}),\cdots,\varphi(g_{\nu(k+1)}))$. Denote by $d\rho$ (respectively, $d\varphi$) the induced automorphism of the Lie algebra \mathfrak{g}^{k+1} (respectively, \mathfrak{g}). Then $d\rho(X_1,\cdots,X_{k+1})=(d\varphi(X_{\nu(1)}),\cdots,d\varphi(X_{\nu(k+1)}),X_1,\cdots,X_{k+1}\in\mathfrak{g}$.

Now let us recall the following result by Borel and Mostow, [1].

Lemma. A semi-simple automorphism A of a nonsolvable Lie algebra g leaves fixed an element X such that ad X is not nilpotent.

 $d\varphi$ is a semi-simple automorphism of $\mathfrak g$ because $(d\varphi)^l=$ identity. Let $X\neq 0$ be a fixed vector of $d\varphi$ and suppose l< k+1. Then the permutation ν contains a cycle (i_1,\cdots,i_m) of length m< k+1. Consider the vector $Z=(X_1,\cdots,X_{k+1})\in \mathfrak g^{k+1}$ such that $X_i=X$ for $i=i_1,\cdots,i_m$ and $X_i=-X$ otherwise. Clearly, $d\varrho(Z)=Z$. Now we can identify $\mathfrak g^{k+1}$ with the tangent space $(G^{k+1})_e$ and $d\varrho$ with the tangent map ϱ_{*e} . We have $\pi_{*e}\circ \varrho_{*e}=r_{*0}\circ \pi_{*e}$, and thus the projection $\pi_{*e}(Z)\in (G^k)_0$ is a fixed vector with respect to r_{*0} .

Moreover, $Z \in (G^{k+1})_e$ is not tangent to the submanifold ΔG^{k+1} and hence $\pi_{*e}(Z) \neq 0$, a contradiction. This completes the proof.

Proposition 3. For G = SO(3) and $\Phi(X, Y) = -\frac{1}{2} \operatorname{tr} (\operatorname{ad} X \circ \operatorname{ad} Y)$ the conditions of Proposition 2 are satisfied.

Proof. In the following, the elements of g (respectively, g^k) are considered as left invariant vector fields on G (respectively, G^k). First of all, there is a basis $\{X_1, X_2, X_3\}$ of g such that $[X_1, X_2] = X_3$, $[X_2, X_3] = X_1$, $[X_3, X_1] = X_2$. We have $\Phi(X_\alpha, X_\beta) = \delta_{\alpha\beta}$ for $\alpha, \beta = 1, 2, 3$, and the vectors $X_\alpha^{(i)}$, $\alpha = 1, 2, 3$, $i = 1, \dots, k$, form a basis of g^k . Now recall formulas (14) of [3]: for $X, Y \in \mathfrak{g}$

$$\begin{split} & \mathcal{V}_{x^{(i)}} Y^{(j)} = \frac{1}{2(k+1)} \{ [X, Y]^{(j)} - [X, Y]^{(i)} \} & \text{for } i \neq j \;, \\ & \mathcal{V}_{x^{(i)}} Y^{(i)} = \frac{1}{2} [X, Y]^{(i)} \;. \end{split}$$

A routine calculation shows the following properties of the curvature tensor R of $\Phi^{[k]}$:

$$R(X_{\alpha}^{(i)}, X_{\beta}^{(j)})X_{\gamma}^{(k)} = 0$$
 whenever $\alpha \neq \beta \neq \gamma$ or $\alpha = \beta = \gamma$,

(1) $R(X_{\alpha}^{(i)}, X_{\beta}^{(j)})X_{\alpha}^{(k)}$ and $R(X_{\alpha}^{(i)}, X_{\alpha}^{(j)})X_{\beta}^{(k)}$ belong to the subspace generated by $X_{\beta}^{(i)}, X_{\beta}^{(i)}, X_{\beta}^{(k)}$.

Let H_0 be the component of the unity of the isotropy group of $I(G^k, \Phi^{[k]})$ at the origin o, and denote the corresponding Lie algebra by \mathfrak{h}_0 . Then \mathfrak{h}_0 has a faithful isotropy representation by endomorphisms of $\mathfrak{g}^k = (G^k)_0$. Clearly, the necessary condition for $A \in \mathfrak{h}_0$ is that $A(\Phi^{[k]}) = A(R) = 0$, where A acts as a derivation on the tensor algebra of \mathfrak{g}^k .

Let $A \in \mathfrak{h}_0$ and set

(2)
$$AX_{\alpha}^{(i)} = \sum_{\beta=1}^{3} \sum_{j=1}^{k} a_{(j)\alpha}^{(i)\beta} X_{\beta}^{(j)}, \quad i = 1, \dots, k, \alpha = 1, 2, 3.$$

The relation $(A\Phi^{[k]})(X_{\alpha}^{(i)}, X_{\beta}^{(j)}) = 0$ implies

(3)
$$k(a_{(i)\alpha}^{(i)\beta} + a_{(j)\beta}^{(j)\alpha}) - \sum_{l \neq i} a_{(l)\alpha}^{(i)\beta} - \sum_{l \neq j} a_{(l)\beta}^{(j)\alpha} = 0.$$

Further, we can calculate easily

$$R(X_{\alpha}^{(i)}, X_{\beta}^{(i)})X_{\alpha}^{(i)} = -\frac{1}{4}X_{\beta}^{(i)}$$
 for $\alpha \neq \beta$.

Consider the relation $(AR)(X_{\alpha}^{(i)}, X_{\beta}^{(i)})X_{\alpha}^{(i)} = 0$, i.e.,

$$(4) \frac{-\frac{1}{4}AX_{\beta}^{(i)} = R(AX_{\alpha}^{(i)}, X_{\beta}^{(i)})X_{\alpha}^{(i)} + R(X_{\alpha}^{(i)}, AX_{\beta}^{(i)})X_{\alpha}^{(i)}}{+ R(X_{\alpha}^{(i)}, X_{\beta}^{(i)})AX_{\alpha}^{(i)}}.$$

Let us substitute (2) in (4) and consider a vector $X_{\tau}^{(j)}$, where $\gamma \neq \alpha, \beta$ and

 $j \neq i$. This vector enters into the left-hand side with the coefficient $-\frac{1}{4}a_{(j)\beta}^{(i)\tau}$. According to (1), there is only one term on the right-hand side the evaluation of which can involve $X_{\tau}^{(j)}$, namely, the term $R(X_{\alpha}^{(i)}, a_{(j)\beta}^{(i)\tau}X_{\tau}^{(j)})X_{\alpha}^{(i)}$. Now

$$R(X_{\alpha}^{(i)}, a_{(i)\beta}^{(i)\gamma} X_{\gamma}^{(j)}) X_{\alpha}^{(i)} = a_{(i)\beta}^{(i)\gamma} [(k+2) X_{\gamma}^{(i)} - X_{\gamma}^{(j)}] / [4(k+1)^2]$$
.

Comparing the coefficients at $X_{\tau}^{(j)}$ we finally get $a_{(j)\beta}^{(i)\tau} = 0$. Thus we have proved

(5)
$$a_{(j)\beta}^{(i)\alpha} = 0 \quad \text{for } i \neq j, \ \alpha \neq \beta.$$

Substituting in (3) we get

$$a_{(i)\alpha}^{(i)\beta} + a_{(i)\alpha}^{(j)\alpha} = 0 \quad \text{for } \alpha \neq \beta.$$

In particular, for i = j we obtain

$$a_{ij)\alpha}^{(i)\beta} + a_{ij)\beta}^{(i)\alpha} = 0 ,$$

and hence

(8)
$$a_{(1)\alpha}^{(1)\beta} = a_{(2)\alpha}^{(2)\beta} = \cdots = a_{(k)\alpha}^{(k)\beta} \quad \text{for } \alpha \neq \beta.$$

Now let us compare the coefficients at $X_{\beta}^{(j)}$, $j \neq i$, in the relation (4). $X_{\beta}^{(j)}$ enters into the left-hand side with the coefficient $-\frac{1}{4}a_{(j)\beta}^{(i)\beta}$. As for the right-hand side, $X_{\beta}^{(j)}$ can be involved only in the evaluations of the terms $R(a_{(j)\alpha}^{(i)\alpha}X_{\alpha}^{(j)}, X_{\beta}^{(i)})X_{\alpha}^{(i)}$, $R(X_{\alpha}^{(i)}, a_{(j)\beta}^{(i)\beta}X_{\beta}^{(j)})X_{\alpha}^{(i)}$, $R(X_{\alpha}^{(i)}, A_{\beta}^{(i)\beta})X_{\alpha}^{(i)}$, $R(X_{\alpha}^{(i)}, A_{\beta}^{(i)\beta})X_{\alpha}^{(i)}$. After routine calculations we obtain

$$(9) (3k+2)a_{(j)\alpha}^{(t)\alpha} + (k^2+2k)a_{(j)\beta}^{(t)\beta} = 0.$$

Writing these relations for $(\alpha, \beta) = (1, 2), (2, 3), (3, 1)$ respectively, we obtain finally

(10)
$$a_{(j)\alpha}^{(i)\alpha} = 0$$
 for $i \neq j$, $\alpha = 1, 2, 3$.

Having i = j and $\alpha = \beta$ in (3), we deduce from (10)

(11)
$$a_{(i)\alpha}^{(i)\alpha} = 0$$
, $\alpha = 1, 2, 3, i = 1, \dots, k$.

If we summarize (5), (10) and then (7), (8), (11), we can see that $\mathfrak{h}_0 \subset \Delta([\mathfrak{So}(3)]^k)$. On the other hand, the group $G^{k+1} = SO(3)^{k+1}$ is contained in $I(G^k, \Phi^{[k]})$ so that $\Delta(SO(3)^{k+1})$ is contained in H_0 . Thus $H_0 = \Delta(SO(3)^{k+1})$, and consequently $SO(3)^{k+1}$ is the component of the unity of $I(G^k, \Phi^{[k]})$ as required. Hence we can conclude our paper with

Theorem. For each integer $k \ge 2$ there exists a compact generalized symmetric Riemannian space (M, g) of order k such that the component of the unity of the full isometry group I(M, g) is semi-simple.

References

- [1] A. Borel & G. D. Mostow, On semi-simple automorphisms of Lie algebras, An. of Math. 61 (1955) 389-405.
- [2] O. Kowalski, Riemannian manifolds with general symmetries, Math. Z. 136 (1974) 137-150.
- [3] A. J. Ledger & M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry 2 (1968) 451-459.
- [4] J. A. Wolf & A. Gray, Homogeneous spaces defined by Lie group automorphisms.
 I, J. Differential Geometry 2 (1968) 77-114.

CHARLES UNIVERSITY, PRAGUE