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EXISTENCE OF GENERALIZED SYMMETRIC
RIEMANNIAN SPACES OF ARBITRARY ORDER

OLDRICH KOWALSKI

A Riemannian symmetric space is a Riemmanian manifold (M, g) with the
following properties: for each x € M there is a (unique) isometry J, on M such
that

(a) x is an isolated fixed point of J,

(b) (J,)? = identity.

It is also easy to show the following property: for every two points x,y e M
we have

© J,oJ,=1,01,, where z = J.(3).

The following is a direct generalization of the previous situation.

Definition. A Riemannian k-symmetric space (k > 2) is a Riemannian
manifold (M, g) on which a family {s,},.» of isometries exists with the follow-
ing properties :

(a) Each x € M is an isolated fixed point of the corresponding s,

(b) (s,)* = identity for all x ¢ M, and k is the minimum number of this
property,

(c) forevery x,yeM, s, o5, = s5,°5,, where Z = s5,(y).

In fact, Ledger and Obata [3] have proved that for every k > 2 there is
a k-symmetric Riemannian space which is not symmetric. The purpose of this
paper is to strengthen the previous result in the following sense: for every
k > 2 there is a k-symmetric Riemannian space which is not l-symmetric for
{=2,-.-,k — 1. (Such a Riemannian space is said to be generalized sym-
metric of order k; see [2]). In our further considerations we shall make full
use of the original construction by Ledger and Obata.

1. Let M = G/H be a homogeneous Riemannian space. As usual, we
suppose G acting effectively on the coset space G/H. Thus the Lie group G
can be considered as a group of isometries on M. Let n: G — M denote the
canonical prejection.

Proposition 1. Let G admit an automorphism ¢ such that

(i) H = G° = the fixed point set of o,

(ii) o* = identity,

(iii) the transformation s of M determined by woo = sorw is an isometry.
Then M is a Riemannian k-symmetric space.
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Proof. For x e M define a transformation s, of M by the formula s, =
gosog™!, where g € z7%(x). Then s, is independent of the choice of g. In fact,
for eachh ¢ Hwehave L,oa0L, , = gandzoL, = hox. Hence (hosoh™)orn
=ho(som)oL, ,=ho(mrog)oL, ;=mo(LyoaoL, ) =noa, and consequent-
ly, hosoh™t = 5. Thus for g’ = gh we obtain g’ os0g’ ™' = gosog™

It is clear that (s.)* = identity for each x € M. We have to prove that x is
an isolated fixed point of s,. For, it is sufficient to show that the initial point
0eM, o = n(H), is an isolated fixed point of 5. Condition (iii) implies that
Sx0© Te = Ty © Ty ON the tangent space G,. Let X ¢ M, be such that s5,,(X)
=X, and let X e G, be a lift of X. Then ﬂ*e(a*e(X)) = n*e(X), and hence
G*e(X) X + Z, where Z ¢ H,. Now a*e(Z) Z, and (a*e)"(X) X+ iz
= X because (04.)* = identity. Thus Z = 0 and X is a fixed vector of O e
We deduce X ¢ H, and X = 0. Because s, has no nonzero fixed vectors and
s is an isometry of M, we conclude that o is an isolated fixed doint of s.

Finally, we have to prove the formula s, o5, = s5,05,, 2 = 5,(»). For this
purpose we shall identify the elements of G with the corresponding transfor-
mations of M. Then we deduce sogos™! = g{g). Put s, = gosog, Sy
= g'o50(g)7!, where x = g(o) and y = g’(0). Then (gosog™'og o57)(0)
= 5,(g'(0)) = 5,(y). On the other hand, goscglog os™! = goa(g™'g)
= g"” belongs to G. Consequently, s,05, =gosog log oso(g)! =
g”oso (gn)—l ° goSOg—l — Ss,-,()’) 08,

2. We shall recall here a class of Riemannian manifolds constructed by
Ledger and Obata (see [3]). Let G be a compact connected nonabelian Lie
group, G*** the direct product of G with itself (k¥ + 1)-times, and AG**! the
diagonal of G**!. Consider the action of G**! on G* given by

(xy, o 2 O ) = (X - s XeYeXiid) -

Then G**! acts on G* transitively and effectively, and 4G*** is the isotropy
group at the identity o = (e, - - -, €) of G*¥. We get a diffeomorphism between
G* and the coset space G**'/ AG**!. Each tangent vector at the identity of G*
can be written in a unique way in the form (X,, - .-, X;), where X, ---,
X, cG,.

Now let @ be an Ad (G)-invariant inner product on G,, and let @*1 be the
Ad (4G**")-invariant inner product on (G*), defined by

@[k]((le ety Xk)a (Xl, M ;’ Xk))
= 3T (X, X)) + % 00 — X, X, — X)) .
i=1 i<j

An alternative definition of @1 is the following: fori =1, -.., kand X ¢ G,
let X9 denote the vector (X, - - -, X,) € (G®), such that X; = X and X; =0
for j %= i. Then OPNX, YY) = kP(X,Y), and O X®, Y¥) = —P(X,Y)
fori =+ j.
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The inner product @1 can be extended, by the left translations of G**!, to
a Riemannian metric on G* denoted also by @1, Then G**!/4G**' becomes
a homogeneous Riemannian manifold (G*, @'5), .

Let ¢ be an automorphism of G**! defined by the rule a(xy, « -+, x;,,) =
(x,1, Xy, -+, %,). Then o satisfies all the conditions of Proposition 1, where
we write k + 1, G**', 4G**!, G* instead of k, G, H, M respectively. In particu-
lar, condition (iii) can be verified as follows: consider the transformation s of
G* determined by 7 o ¢ = sox. Then for any X ¢ G, we deduce casily s,,(X®)
= X6 for j=1, .-+, k — 1, SpeX®) = —(X® 4+ ... 4+ X®), and
OI(5, XD, 5, Y ) = O*(XP, YD) for i,j =1, .-+, k. Thus the Rieman-
nian manifold (G*, @) is (k + 1)-symmetric.

3. In the remainder of this paper we shall specialize the class of manifolds
(G*, @'1) in a proper way.

Proposition 2. Consider a homogeneous Riemannian manifold (G*, ®™*))
such that

(a) G is simple, :

(b) G**!is the component of unity of the full isometry group I(G*, §¥*1),
Then (G*, @) is not l-symmetric for any | < k + 1.

Proof. Letr be an isometry of (G*, §*) with the isolated fixed point 0 =
(e, - - -, e) such that r' = identity. Define an automorphism § of the group
I(G*, 1) by the formula j(g) = rogor~!. Then the restriction of g to G***
is an automorphism p of G**'. We can easily see that zop = rox.

Now G**! is a direct product of simple subgroups G*®, i =1, ...,k + 1,
all of them being canonically isomorphic to the group G. Then the automor-
phism p: G**' — G**! induces a permutation v of the indices 1,.--,k + 1
such that o(G**") = G*®, i =1, ...,k + 1. Denoting by ¢; the restriction
of p to G**9, we get p(g;, - -+, 8xy) = (0:1(80))5 + 5 Pr+1(8uiisny))- In particu-
lar, o(g, - -+, 8) = (4(8), - - -, ©1.1(g)). Because p(4G*+Y) < AG*+!, we obtain
@, = @, = - -+ = @y, under the canonical identification G*® = ... = G**+*b
= G, and therefore a unique automorphism ¢ : G— G such that p(g,, « - -, gx.1)
= (p(g,a))s - - *» ©(8x 1)) Denote by dp (respectively, dy) the induced auto-
morphism of the Lie algebra g*** (respectively, g). Then do(X,, - - -, X4,y =
(dSD(Xy(l))> Tt d@(Xu<k+1))> X17 Tty Xk+1 €g.

Now let us recall the following result by Borel and Mostow, [1].

Lemma. A semi-simple automorphism A of a nonsolvable Lie algebra g
leaves fixed an element X such that ad X is not nilpotent.

dg is a semi-simple automorphism of g because (dyp)* = identity. Let X % 0
be a fixed vector of dy and suppose [ << k + 1. Then the permutation » con-
tains a cycle (i, ---,i,) of length m < k + 1. Consider the vector Z =
Xy, -+, X;,)egh! such that X, =X for i =i, --+,i, and X, = —X
otherwise. Clearly, do(Z) = Z. Now we can identify g**' with the tangent
space (G**"), and dp with the tangent map g,.. We have w0 oo = ryq° Ty,
and thus the projection =,,(Z) € (G¥), is a fixed vector with respect to r,.
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Moreover, Z e (G**?), is not tangent to the submanifold 4G**' and hence
7..(Z) # 0, a contradiction. This completes the proof.

Proposition 3. For G = SOQ) and #(X,Y) = —itr(@dXocadY) the
conditions of Proposition 2 are satisfied.

Proof. In the following, the elements of g (respectively, g*) are considered
as left invariant vector fields on G (respectively, G*). First of all, there is a
basis {X,, X,, X} of g such that [X,, X,] = X;, [X,, X;] = X, [X;,X|] = X,.
We have 0(X_, X;) = §,, for a, = 1, 2, 3, and the vectors X, « = 1,2, 3,
i=1,.-.,k, form a basis of g*. Now recall formulas (14) of [3]: for X,Y e g

1 : , ,
V . fy — R Y (&3] s Y ¢} f ,
Y = 2G LD {[X, Y]¥ — [X, Y]®} ori+j
Vx(i) Y @) :(1{_[ X R Y](‘l:) .

A routine calculation shows the following properties of the curvature tensor R
of @r¥1:
RXP, XMX™® = (O whenevera # f#+yora=§=r,
(1) RX®, XMX® and R(XP, X)X belong to the subspace
generated by X, X{, D¢ &

Let H, be the component of the unity of the isotropy group of /(G*, ') at
the origin o, and denote the corresponding Lie algebra by §,. Then §, has a
faithful isotropy representation by endomorphisms of g* = (G*),. Clearly, the
necessary condition for 4 e §, is that 4A(@¥) = A(R) = 0, where 4 acts as a

derivation on the tensor algebra of g*.
Let 4 € ), and set

3 k
(2)  AX®D =Y Ma@EXy, i=1,--ka=1273.

p=14=1
The relation (APHH)(XP, X§”) = O implies
(3) kagl + afp) — B al — Lady=0.
Further, we can calculate easily
RXP, XNXP = —1XP fora £ 8.
Consider the relation (AR)(X{, X{NXP =0, i.e.,

—3AX$ = R(AX®, XNX® + RX®, AX)X D

(4) e T
+ RQX®, XP)AXE .

Let us substitute (2) in (4) and consider a vector X, where y # «, 5 and
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j # i. This vector enters into the left-hand side with the coefficient — La{?7.

According to (1), there is only one term on the right-hand side the evaluation
of which can involve X!, namely, the term R(X®, af, X)X ®. Now
RXP, afnXMXP = a@rl(k + 2)X® — XP]/[4k + 1)7 .

Comparing the coefficients at X we finally get a{®; = 0. Thus we have
proved

(5) afls =0 fori£j,a+p.
Substituting in (3) we get
(6) aBt + a5 =0 fora + 8.

In particular, for i = j we obtain

(7) a@i +afs =0,
and hence
(8) Bt —afi= .. =af fora#g.

Now let us compare the coefficients at X{, j # I, in the relation (4). X§
enters into the left-hand side with the coefficient —1a{?4. As for the right-hand
side, X{’ can be involved only in the evaluations of the terms R(a{): X%,
XP)XP, RXP,aBtXP)XP, RIXP, XP)afhX). After routine calcula-
tions we obtain

(9) Gk + 2afs + (K + 2k)alBi =0 .

Writing these relations for (e, B) = (1, 2), (2, 3), (3, 1) respectively, we obtain
finally

10 alr =0 fori#j,ea=1,2,3.
Having { = j and & = $ in (3), we deduce from (10)
11 a@r=0, a=1,23i=1,-.--,k,.

If we summarize (5), (10) and then (7), (8), (11), we can see that
9, € 4([80(3)]1%). On the other hand, the group G*** = SO(3)**! is contained
in I(G*®, @™1) so that A(SO(3)**?) is contained in H,. Thus H, = 4(SO(3)**"),
and consequently SO(3)**! is the component of the unity of I(G*, &™) as re-
quired. Hence we can conclude our paper with :

Theorem. For each integer k > 2 there exists a compact generalized sym-
metric Riemannian space (M, g) of order k such that the compornent of the
unity of the full isometry group I(M, g) is semi-simple.
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